Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Int J Hyg Environ Health ; 259: 114382, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652943

RESUMO

Air pollution is a known risk factor for several diseases, but the extent to which it influences COVID-19 compared to other respiratory diseases remains unclear. We performed a test-negative case-control study among people with COVID-19-compatible symptoms who were tested for SARS-CoV-2 infection, to assess whether their long- and short-term exposure to ambient air pollution (AAP) was associated with testing positive (vs. negative) for SARS-CoV-2. We used individual-level data for all adult residents in the Netherlands who were tested for SARS-CoV-2 between June and November 2020, when only symptomatic people were tested, and modeled ambient concentrations of PM10, PM2.5, NO2 and O3 at geocoded residential addresses. In long-term exposure analysis, we selected individuals who did not change residential address in 2017-2019 (1.7 million tests) and considered the average concentrations of PM10, PM2.5 and NO2 in that period, and different sources of PM (industry, livestock, other agricultural activities, road traffic, other Dutch sources, foreign sources). In short-term exposure analysis, individuals not changing residential address in the two weeks before testing day (2.7 million tests) were included in the analyses, thus considering 1- and 2-week average concentrations of PM10, PM2.5, NO2 and O3 before testing day as exposure. Mixed-effects logistic regression analysis with adjustment for several confounders, including municipality and testing week to account for spatiotemporal variation in viral circulation, was used. Overall, there was no statistically significant effect of long-term exposure to the studied pollutants on the odds of testing positive vs. negative for SARS-CoV-2. However, significant positive associations of long-term exposure to PM10 and PM2.5 from specifically foreign and livestock sources, and to PM10 from other agricultural sources, were observed. Short-term exposure to PM10 (adjusting for NO2) and PM2.5 were also positively associated with increased odds of testing positive for SARS-CoV-2. While these exposures seemed to increase COVID-19 risk relative to other respiratory diseases, the underlying biological mechanisms remain unclear. This study reinforces the need to continue to strive for better air quality to support public health.

2.
Environ Res ; 252(Pt 1): 118812, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561121

RESUMO

Several studies have linked air pollution to COVID-19 morbidity and severity. However, these studies do not account for exposure levels to SARS-CoV-2, nor for different sources of air pollution. We analyzed individual-level data for 8.3 million adults in the Netherlands to assess associations between long-term exposure to ambient air pollution and SARS-CoV-2 infection (i.e., positive test) and COVID-19 hospitalisation risks, accounting for spatiotemporal variation in SARS-CoV-2 exposure levels during the first two major epidemic waves (February 2020-February 2021). We estimated average annual concentrations of PM10, PM2.5 and NO2 at residential addresses, overall and by PM source (road traffic, industry, livestock, other agricultural sources, foreign sources, other Dutch sources), at 1 × 1 km resolution, and weekly SARS-CoV-2 exposure at municipal level. Using generalized additive models, we performed interval-censored survival analyses to assess associations between individuals' average exposure to PM10, PM2.5 and NO2 in the three years before the pandemic (2017-2019) and COVID-19-outcomes, adjusting for SARS-CoV-2 exposure, individual and area-specific confounders. In single-pollutant models, per interquartile (IQR) increase in exposure, PM10 was associated with 7% increased infection risk and 16% increased hospitalisation risk, PM2.5 with 8% increased infection risk and 18% increased hospitalisation risk, and NO2 with 3% increased infection risk and 11% increased hospitalisation risk. Bi-pollutant models suggested that effects were mainly driven by PM. Associations for PM were confirmed when stratifying by urbanization degree, epidemic wave and testing policy. All emission sources of PM, except industry, showed adverse effects on both outcomes. Livestock showed the most detrimental effects per unit exposure, whereas road traffic affected severity (hospitalisation) more than infection risk. This study shows that long-term exposure to air pollution increases both SARS-CoV-2 infection and COVID-19 hospitalisation risks, even after controlling for SARS-CoV-2 exposure levels, and that PM may have differential effects on these COVID-19 outcomes depending on the emission source.

3.
mSystems ; 9(4): e0132823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501800

RESUMO

Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors.


Assuntos
Anti-Infecciosos , Gado , Suínos , Animais , Bovinos , Farmacorresistência Bacteriana/genética , Galinhas/microbiologia , Anti-Infecciosos/farmacologia , Bactérias/genética
4.
Environ Pollut ; 346: 123590, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387543

RESUMO

Adverse health effects have been linked with exposure to livestock farms, likely due to airborne microbial agents. Accurate exposure assessment is crucial in epidemiological studies, however limited studies have modelled bioaerosols. This study used measured concentrations in air of livestock commensals (Escherichia coli (E. coli) and Staphylococcus species (spp.)), and antimicrobial resistance genes (tetW and mecA) at 61 residential sites in a livestock-dense region in the Netherlands. For each microbial agent, land use regression (LUR) and random forest (RF) models were developed using Geographic Information System (GIS)-derived livestock-related characteristics as predictors. The mean and standard deviation of annual average concentrations (gene copies/m3) of E. coli, Staphylococcus spp., tetW and mecA were as follows: 38.9 (±1.98), 2574 (±3.29), 20991 (±2.11), and 15.9 (±2.58). Validated through 10-fold cross-validation (CV), the models moderately explained spatial variation of all microbial agents. The best performing model per agent explained respectively 38.4%, 20.9%, 33.3% and 27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and mecA. RF models had somewhat better performance than LUR models. Livestock predictors related to poultry and pig farms dominated all models. To conclude, the models developed enable enhanced estimates of airborne livestock-related microbial exposure in future epidemiological studies. Consequently, this will provide valuable insights into the public health implications of exposure to specific microbial agents.


Assuntos
Poluentes Atmosféricos , Gado , Animais , Suínos , Fazendas , Escherichia coli , Algoritmo Florestas Aleatórias , Aves Domésticas , Poluentes Atmosféricos/análise
5.
Sci Rep ; 14(1): 419, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172539

RESUMO

This longitudinal study aimed to assess the impact of COVID-19 containment measures on perceived health, health protective behavior and risk perception, and investigate whether chronic disease status and urbanicity of the residential area modify these effects. Participants (n = 5420) were followed for up to 14 months (September 2020-October 2021) by monthly questionnaires. Chronic disease status was obtained at baseline. Urbanicity of residential areas was assessed based on postal codes or neighborhoods. Exposure to containment measures was assessed using the Containment and Health Index (CHI). Bayesian multilevel-models were used to assess effect modification of chronic disease status and urbanicity by CHI. CHI was associated with higher odds for worse physical health in people with chronic disease (OR = 1.09, 95% credibility interval (CrI) = 1.01, 1.17), but not in those without (OR = 1.01, Crl = 0.95, 1.06). Similarly, the association of CHI with higher odds for worse mental health in urban dwellers (OR = 1.31, Crl = 1.23, 1.40) was less pronounced in rural residents (OR = 1.20, Crl = 1.13, 1.28). Associations with behavior and risk perception also differed between groups. Our study suggests that individuals with chronic disease and those living in urban areas are differentially affected by government measures put in place to manage the COVID-19 pandemic. This highlights the importance of considering vulnerable subgroups in decision making regarding containment measures.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Estudos Longitudinais , Pandemias/prevenção & controle , Teorema de Bayes , Nível de Saúde , Doença Crônica
6.
Environ Res ; 243: 117821, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072102

RESUMO

BACKGROUND: Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS: In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS: Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS: Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Animais , Humanos , Fazendas , Gado , Endotoxinas/toxicidade , Agricultura , Poluição do Ar/análise , Poluentes Ambientais/análise , Pulmão/química , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Material Particulado/análise
7.
Am J Epidemiol ; 193(4): 646-659, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37981719

RESUMO

Although there is scientific evidence for an increased prevalence of sleep disorders during the coronavirus disease 2019 (COVID-19) pandemic, there is still limited information on how lifestyle factors might have affected sleep patterns. Therefore, we followed a large cohort of participants in the Netherlands (n = 5,420) for up to 1 year (September 2020-2021) via monthly Web-based questionnaires to identify lifestyle changes (physical activity, cigarette smoking, alcohol consumption, electronic device use, and social media use) driven by anti-COVID-19 measures and their potential associations with self-reported sleep (latency, duration, and quality). We used the Containment and Health Index (CHI) to assess the stringency of anti-COVID-19 measures and analyzed associations through multilevel ordinal response models. We found that more stringent anti-COVID-19 measures were associated with higher use of electronic devices (per interquartile-range increase in CHI, odds ratio (OR) = 1.47, 95% confidence interval (CI): 1.40, 1.53), less physical activity (OR = 0.94, 95% CI: 0.90, 0.98), lower frequency of alcohol consumption (OR = 0.63, 95% CI: 0.60, 0.66), and longer sleep duration (OR = 1.11, 95% CI: 1.05, 1.16). Lower alcohol consumption frequency and higher use of electronic devices and social media were associated with longer sleep latency. Lower physical activity levels and higher social media and electronic device use were related to poorer sleep quality and shorter sleep duration.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Países Baixos/epidemiologia , Estudos Longitudinais , Estilo de Vida , Sono
8.
Pneumonia (Nathan) ; 15(1): 13, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667350

RESUMO

BACKGROUND: Although the association between living in the vicinity of a goat farm and the occurrence of pneumonia is well-documented, it is unclear whether the higher risk of pneumonia in livestock dense areas is season-specific or not. This study explored the temporal variation of the association between exposure to goat farms and the occurrence of pneumonia. METHODS: A large population-based study was conducted in the Netherlands, based on electronic health records from 49 general practices, collected for a period of six consecutive years (2014-2019). Monthly incidence rates of pneumonia in a livestock dense area were compared with those of a control group (areas with low livestock density) both per individual year and cumulatively for the entire six-year period. Using individual estimates of livestock exposure, it was also examined whether incidence of pneumonia differed per month if someone lived within a certain radius from a goat farm, compared to residents who lived further away. RESULTS: Pneumonia was consistently more common in the livestock dense area throughout the year, compared to the control area. Analyses on the association between the individual livestock exposure estimates and monthly pneumonia incidence for the whole six-year period, yielded a generally higher risk for pneumonia among people living within 500 m from a goat farm, compared to those living further away. Significant associations were observed for March (IRR 1.68, 95% CI 1.02-2.78), August (IRR 2.67, 95% CI 1.45-4.90) and September (IRR 2.52, 95% CI 1.47-4.32). CONCLUSIONS: The increased occurrence of pneumonia in the vicinity of goat farms is not season-specific. Instead, pneumonia is more common in livestock dense areas throughout the year, including summer months.

9.
PLoS One ; 18(7): e0286972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405987

RESUMO

BACKGROUND: Previous studies, performed between 2009-2019, in the Netherlands observed an until now still unexplained increased risk for pneumonia among residents living close to goat farms. Since data were collected in the provinces Noord-Brabant and Limburg (NB-L), an area with relatively high air pollution levels and proximity to large industrial areas in Europe, the question remains whether the results are generalizable to other regions. In this study, a different region, covering the provinces Utrecht, Gelderland, and Overijssel (UGO) with a similar density of goat farms, was included to assess whether the association between goat farm proximity and pneumonia is consistently observed across the Netherlands. METHODS: Data for this study were derived from the Electronic Health Records (EHR) of 21 rural general practices (GPs) in UGO, for 2014-2017. Multi-level analyses were used to compare annual pneumonia prevalence between UGO and data derived from rural reference practices ('control area'). Random-effects meta-analysis (per GP practice) and kernel analyses were performed to study associations of pneumonia with the distance between goat farms and patients' home addresses. RESULTS: GP diagnoses of pneumonia occurred 40% more often in UGO compared to the control area. Meta-analysis showed an association at a distance of less than 500m (~70% more pneumonia compared to >500m) and 1000m (~20% more pneumonia compared to >1000m). The kernel-analysis for three of the four individual years showed an increased risk up to a distance of one or two kilometers (2-36% more pneumonia; 10-50 avoidable cases per 100,000 inhabitants per year). CONCLUSIONS: The positive association between living in the proximity of goat farms and pneumonia in UGO is similar to the previously found association in NB-L. Therefore, we concluded that the observed associations are relevant for regions with goat farms in the entire country.


Assuntos
Gado , Pneumonia , Animais , Cabras , Fazendas , Países Baixos/epidemiologia , Pneumonia/epidemiologia , Pneumonia/veterinária , Pneumonia/etiologia
10.
Ann Work Expo Health ; 67(8): 1004-1010, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37300560

RESUMO

Methicillin-resistant strains of Staphylococcus aureus (MRSA) are resistant to most ß-lactam antibiotics. Pigs are an important reservoir of livestock-associated MRSA (LA-MRSA), which is genetically distinct from both hospital and community-acquired MRSA. Occupational exposure to pigs on farms can lead to LA-MRSA carriage by workers. There is a growing body of research on MRSA found in the farm environment, the airborne route of transmission, and its implication on human health. This study aims to directly compare two sampling methods used to measure airborne MRSA in the farm environment; passive dust sampling with electrostatic dust fall collectors (EDCs), and active inhalable dust sampling using stationary air pumps with Gesamtstaubprobenahme (GSP) sampling heads containing Teflon filters. Paired dust samples using EDCs and GSP samplers, totaling 87 samples, were taken from 7 Dutch pig farms, in multiple compartments housing pigs of varying ages. Total nucleic acids of both types of dust samples were extracted and targets indicating MRSA (femA, nuc, mecA) and total bacterial count (16S rRNA) were quantified using quantitative real-time PCRs. MRSA could be measured from all GSP samples and in 94% of the EDCs, additionally MRSA was present on every farm sampled. There was a strong positive relationship between the paired MRSA levels found in EDCs and those measured on filters (Normalized by 16S rRNA; Pearson's correlation coefficient r = 0.94, Not Normalized; Pearson's correlation coefficient r = 0.84). This study suggests that EDCs can be used as an affordable and easily standardized method for quantifying airborne MRSA levels in the pig farm setting.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Exposição Ocupacional , Infecções Estafilocócicas , Suínos , Humanos , Animais , Fazendas , RNA Ribossômico 16S , Poeira/análise , Infecções Estafilocócicas/veterinária , Exposição Ocupacional/análise
11.
Environ Res ; 231(Pt 1): 116063, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156352

RESUMO

Residential microbial composition likely contributes to the development of lower respiratory tract infections (LRTI) among children, but the association is poorly understood. We aimed to study the relationship between the indoor airborne dust bacterial and fungal microbiota and childhood LRTI in Ibadan, Nigeria. Ninety-eight children under the age of five years hospitalized with LRTI were recruited and matched by age (±3 months), sex, and geographical location to 99 community-based controls without LRTI. Participants' homes were visited and sampled over a 14-day period for airborne house dust using electrostatic dustfall collectors (EDC). In airborne dust samples, the composition of bacterial and fungal communities was characterized by a meta-barcoding approach using amplicons targeting simultaneously the bacterial 16S rRNA gene and the internal-transcribed-spacer (ITS) region-1 of fungi in association with the SILVA and UNITE database respectively. A 100-unit change in house dust bacterial, but not fungal, richness (OR 1.06; 95%CI 1.03-1.10) and a 1-unit change in Shannon diversity (OR 1.92; 95%CI 1.28-3.01) were both independently associated with childhood LRTI after adjusting for other indoor environmental risk factors. Beta-diversity analysis showed that bacterial (PERMANOVA p < 0.001, R2 = 0.036) and fungal (PERMANOVA p < 0.001, R2 = 0.028) community composition differed significantly between homes of cases and controls. Pair-wise differential abundance analysis using both DESEq2 and MaAsLin2 consistently identified the bacterial phyla Deinococcota (Benjamini-Hochberg (BH) adjusted p-value <0.001) and Bacteriodota (BH-adjusted p-value = 0.004) to be negatively associated with LRTI. Within the fungal microbiota, phylum Ascomycota abundance (BH adjusted p-value <0.001) was observed to be directly associated with LRTI, while Basidiomycota abundance (BH adjusted p-value <0.001) was negatively associated with LRTI. Our study suggests that early-life exposure to certain airborne bacterial and fungal communities is associated with LRTI among children under the age of five years.


Assuntos
Poluição do Ar em Ambientes Fechados , Microbiota , Micobioma , Infecções Respiratórias , Humanos , Criança , Pré-Escolar , Lactente , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , RNA Ribossômico 16S , Microbiota/genética , Nigéria , Poeira/análise , Bactérias/genética , Fungos/genética
12.
Environ Epidemiol ; 7(2): e247, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064421

RESUMO

Previous epidemiological studies demonstrated an increased risk of respiratory health effects in children and adults exposed to dampness or mold. This study investigated associations of quantitative indicators of indoor dampness and mold exposure with severe lower respiratory tract infections (LRTI) among children aged 1-59 months in Ibadan, Nigeria. Methods: In-home visits were conducted among 178 children hospitalized with LRTI matched by age (±3 months), sex, and geographical location with 180 community-based children without LRTI. Trained study staff evaluated the indoor environment using a standardized home walkthrough checklist and measured visible dampness and mold damage. Damp-moldy Index (DMI) was also estimated to quantify the level of exposure. Exposure-response relationships of dampness and mold exposure with severe LRTI were assessed using multivariable restricted cubic spline regression models adjusting for relevant child, housing, and environmental characteristics. Results: Severe LRTI cases were more often male than female (61.8%), and the overall mean (SD) age was 7.3 (1.35) months. Children exposed to dampness <0.3 m2 (odds ratio [OR] = 2.11; 95% confidence interval [CI] = 1.05, 4.36), and between 0.3 and 1.0 m2 (OR = 2.34; 95% CI = 1.01, 7.32), had a higher odds of severe LRTI compared with children not exposed to dampness. The restricted cubic spline showed a linear exposure-response association between severe LRTI and residential dampness (P < 0.001) but a nonlinear relationship with DMI (P = 0.01). Conclusions: Residential dampness and DMI were exposure-dependently associated with higher odds of severe LRTI among under-five children. If observed relationships were causal, public health intervention strategies targeted at reducing residential dampness are critically important to mitigate the burden of severe LRTI among under-five children.

13.
Ann Work Expo Health ; 67(6): 720-730, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104665

RESUMO

BACKGROUND: Occupational exposure to soluble chlorinated platinum (Pt) salts, commonly called chloroplatinates, is a known cause of Pt salt sensitisation (PSS) and occupational asthma. We aimed to model inhalable soluble Pt salts exposure levels based on measurements in precious metal refineries for use in a retrospective cohort study on PSS. METHODS: Five platinum refineries located in the United Kingdom (3 sites), United States, and South Africa provided time weighted average inhalable soluble Pt salts exposure data, measured in 2,982 personal air samples over a 17-year period (2000-2016). We used a Bayesian hierarchical model to estimate geometric mean (GM) exposure levels for each refinery and job title over time. RESULTS: The GM of measured exposure levels over all facilities was 92 ng/m3 with a geometric standard deviation (GSD) of 9.07. Facility-specific GMs ranged from 48 ng/m3 (GSD 15.3) to 242 ng/m3 (GSD 5.99). Exposure modelling showed that soluble Pt salts exposure levels declined approximately 10% per year in two of the five facilities, but there were no clear time trends in the other facilities. A priori specified exposure groups captured most of the between-jobs differences, which helps to accurately predict exposures for jobs with no measurement data available. CONCLUSIONS: We applied exposure modelling to estimate time, refinery, and job-specific soluble Pt salts exposures. A significant annual decline in exposure levels was observed in two of the five participating facilities. Modelled exposure levels can be linked to individual workers' job history for exposure-response analysis of PSS in an epidemiological study.


Assuntos
Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Platina/análise , Sais , Estudos Retrospectivos , Teorema de Bayes
14.
J Occup Environ Med ; 65(4): e227-e233, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640441

RESUMO

OBJECTIVE: We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight into potential occupational exposure in a large meat processing plant experiencing COVID-19 clusters. Methods: Oro-nasopharyngeal SARS-CoV-2 screening was performed in 76 workers. Environmental samples ( n = 275) including air, ventilation systems, sewage, and swabs of high-touch surfaces and workers' hands were tested for SARS-CoV-2 RNA by real-time quantitative polymerase chain reaction. Results: Twenty-seven (35.5%) of the (predominantly asymptomatic) workers tested positive with modest to low viral loads (cycle threshold ≥ 29.7). Six of 203 surface swabs, 1 of 12 personal air samples, and one of four sewage samples tested positive; other samples tested negative. Conclusions: Although one third of workers tested positive, environmental contamination was limited. Widespread SARS-CoV-2 transmission via air and surfaces was considered unlikely within this plant at the time of investigation while strict COVID-19 control measures were already implemented.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , RNA Viral , Estudos de Amostragem , Esgotos
15.
Environ Res ; 219: 115134, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563981

RESUMO

BACKGROUND: There is a growing interest in the impact of air pollution from livestock farming on respiratory health. Studies in adults suggest adverse effects of livestock farm emissions on lung function, but so far, studies involving children and adolescents are lacking. OBJECTIVES: To study the association of residential proximity to livestock farms and modelled particulate matter ≤10 µm (PM10) from livestock farms with lung function in adolescence. METHODS: We performed a cross-sectional study among 715 participants of the Dutch prospective PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort study. Relationships of different indicators of residential livestock farming exposure (distance to farms, distance-weighted number of farms, cattle, pigs, poultry, horses and goats within 3 km; modelled atmospheric PM10 concentrations from livestock farms) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 were assessed by linear regression taking into account potential confounders. Associations were expressed per interquartile range increase in exposure. RESULTS: Higher exposure to livestock farming was consistently associated with a lower FEV1, but not with FVC among participants living in less urbanized municipalities (<1500 addresses/km2, N = 402). Shorter distances of homes to livestock farms were associated with a 1.4% (0.2%; 2.7%) lower FEV1. Larger numbers of farms within 3 km and higher concentrations of PM10 from livestock farming were associated with a 1.8% (0.8%, 2.9%) and 0.9% (0.4%,1.5%) lower FEV1, respectively. CONCLUSIONS: Our findings suggest that higher exposure to livestock farming is associated with a lower FEV1 in adolescents. Replication and more research on the etiologic agents involved in these associations and the underlying mechanisms is needed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Animais , Suínos , Bovinos , Cavalos , Fazendas , Gado , Estudos de Coortes , Estudos Prospectivos , Estudos Transversais , Exposição Ambiental/análise , Material Particulado/análise , Poluição do Ar/efeitos adversos , Pulmão , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
16.
BMC Pulm Med ; 22(1): 471, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494686

RESUMO

BACKGROUND: This study aimed to investigate the association between exposure to diverse indoor microbial aerosols and lower respiratory tract infections (LRTI) among children aged 1 to 59 months in Ibadan, Nigeria. METHODS: One hundred and seventy-eight (178) hospital-based LRTI cases among under-five children were matched for age (± 3 months), sex and geographical location with 180 community-based controls (under-five children without LRTI). Following consent from caregivers of eligible participants, a child's health questionnaire, clinical proforma and standardized home-walkthrough checklist were used to collect data. Participant homes were visited and sampled for indoor microbial exposures using active sampling approach by Anderson sampler. Indoor microbial count (IMC), total bacterial count (TBC), and total fungal count (TFC) were estimated and dichotomized into high (> median) and low (≤ median) exposures. Alpha diversity measures including richness (R), Shannon (H) and Simpson (D) indices were also estimated. Conditional logistic regression models were used to test association between exposure to indoor microbial aerosols and LRTI risk among under-five children. RESULTS: Significantly higher bacterial and fungal diversities were found in homes of cases (R = 3.00; H = 1.04; D = 2.67 and R = 2.56; H = 0.82; D = 2.33) than homes of controls (R = 2.00; H = 0.64; D = 1.80 and R = 1.89; H = 0.55; D = 1.88) p < 0.001, respectively. In the multivariate models, higher categories of exposure to IMC (aOR = 2.67, 95% CI 1.44-4.97), TBC (aOR = 2.51, 95% CI 1.36-4.65), TFC (aOR = 2.75, 95% CI 1.54-4.89), bacterial diversity (aOR = 1.87, 95% CI 1.08-3.24) and fungal diversity (aOR = 3.00, 95% CI 1.55-5.79) were independently associated with LRTI risk among under-five children. CONCLUSIONS: This study suggests an increased risk of LRTI when children under the age of five years are exposed to high levels of indoor microbial aerosols.


Assuntos
Aerossóis e Gotículas Respiratórios , Infecções Respiratórias , Criança , Humanos , Lactente , Nigéria/epidemiologia , Infecções Respiratórias/epidemiologia , Bactérias , Contagem de Colônia Microbiana
17.
Environ Int ; 169: 107497, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36088872

RESUMO

Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) composition of COPD patients and controls in a livestock-dense area. Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls (baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control swabs, taken every sampling day, were also included in the downstream analysis. Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients (p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate correlation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable over a 12 week period and that a single sample sufficiently represents the OPM. Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM of COPD patients is susceptible to alterations induced by exposure to air pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Microbiota , Doença Pulmonar Obstrutiva Crônica , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Animais , Endotoxinas/análise , Fazendas , Humanos , Gado , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
18.
Sci Rep ; 12(1): 16308, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175536

RESUMO

Farm animals may harbor viral pathogens, some with zoonotic potential which can possibly cause severe clinical outcomes in animals and humans. Documenting the viral content of dust may provide information on the potential sources and movement of viruses. Here, we describe a dust sequencing strategy that provides detailed viral sequence characterization from farm dust samples and use this method to document the virus communities from chicken farm dust samples and paired feces collected from the same broiler farms in the Netherlands. From the sequencing data, Parvoviridae and Picornaviridae were the most frequently found virus families, detected in 85-100% of all fecal and dust samples with a large genomic diversity identified from the Picornaviridae. Sequences from the Caliciviridae and Astroviridae familes were also obtained. This study provides a unique characterization of virus communities in farmed chickens and paired farm dust samples and our sequencing methodology enabled the recovery of viral genome sequences from farm dust, providing important tracking details for virus movement between livestock animals and their farm environment. This study serves as a proof of concept supporting dust sampling to be used in viral metagenomic surveillance.


Assuntos
Galinhas , Poeira , Animais , Fazendas , Humanos , Metagenoma , Metagenômica
19.
Transbound Emerg Dis ; 69(6): 4034-4040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36163676

RESUMO

Several domestic and wild animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Reported (sero)prevalence in dogs and cats vary largely depending on the target population, test characteristics, geographical location and time period. This research assessed the prevalence of SARS-CoV-2-positive cats and dogs (PCR- and/or antibody positive) in two different populations. Dogs and cats living in a household with at least one confirmed COVID-19-positive person (household (HH) study; 156 dogs and 152 cats) and dogs and cats visiting a veterinary clinic (VC) (VC study; 183 dogs and 140 cats) were sampled and tested for presence of virus (PCR) and antibodies. Potential risk factors were evaluated and follow-up of PCR-positive animals was performed to determine the duration of virus shedding and to detect potential transmission between pets in the same HH. In the HH study, 18.8% (27 dogs, 31 cats) tested SARS-CoV-2 positive (PCR- and/or antibody positive), whereas in the VC study, SARS-CoV-2 prevalence was much lower (4.6%; six dogs, nine cats). SARS-CoV-2 prevalence amongst dogs and cats was significantly higher in the multi-person HHs with two or more COVID-19-positive persons compared with multi-person HHs with only one COVID-19-positive person. In both study populations, no associations could be identified between SARS-CoV-2 status of the animal and health status, age or sex. During follow-up of PCR-positive animals, no transmission to other pets in the HH was observed despite long-lasting virus shedding in cats (up to 35 days). SARS-CoV-2 infection in dogs and cats appeared to be clearly associated with reported COVID-19-positive status of the HH. Our study supports previous findings and suggests a very low risk of pet-to-human transmission within HHs, no severe clinical signs in pets and a negligible pet-to-pet transmission between HHs.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Humanos , Animais , Gatos , Cães , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2 , Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologia , Animais Selvagens
20.
Viruses ; 14(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36016375

RESUMO

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Assuntos
COVID-19 , Fazendas , Vison , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Feminino , Masculino , Vison/virologia , Países Baixos/epidemiologia , Fatores de Risco , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA